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The equilibrium of an elastic body with a plane base placed on several small smooth rigid supports T(E) 

is studied. One-sided contact boundary conditions are imposed on I’(E) The leading terms of the 

asymptotic solution of the problem as E + 0 are constructed and justified; the problem becomes 

statically indeterminate when the number of supports exceeds three. The problem of finding the 

contact zone reduces to solving a non-linear algebraic problem. Besides the three equilibrium 

equations which connect the unknown support reactions, this problem includes compatibility of the 

deformation conditions which contain, in particular, three unknown parameters describing the 

settlement of the body. Necessary and sufficient conditions for the existence and uniqueness of the 

solution of the limiting algebraic problem are proved. 

1. STATEMENT OF THE PROBLEM 

Suppose that in its undeformed state the body occupies a domain Q in the space R3 with 
boundary &, a part C of which coincides with part of the x3 = 0 plane (see Fig. 1). On E,\iZlC 
we select points P’, . . . , P' with coordinates (x{, xi, 0), j= 1, . . . , J. Here and below our 
notation does not distinguish between points in R2 and their images in the {x : x3 = 0) plane in 
R3. Suppose also that oj is a domain in RZ bounded by a simple smooth closed contour aOj, E 
is a small positive parameter, and 

Additional assumptions will be made in Sections 3 and 4 about the relative positions of the 
points Pj and the sets ai( The union of all the closures Ok is denoted by I(e). Under the 
action of volume forces f the body can rest on plane completely rigid smooth supports T(E). 
The surface X2 \ I(E) is assumed to be unloaded. 

In order to write the elasticity equations in a convenient from we will use the following 
notation 

@‘(X)=&Xi, 04(X)=2-K(X2e3 +x3e2) 

@5(x)=2-)4(xle3+x3e1), ~6(~)=2-H(~2e'+x,e2) 

cpi = ei, Cp3+‘(x)=2-Kxxei 

(1.1) 

(1.2) 
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Fig. 1. 

Here i = 1,2,3, e’ is the unit vector along the xi axis, the cross denotes the vector product, 
and all vectors are expressed as columns. Suppose also that D(x) is a (3 x6) matrix with 
columns Q’(x), . . . , a”(x) and that d(x) is a (3x6) matrix with columns (p’, . . . , <p”(x), and 
that A is a (6 x 6) matrix of the elastic moduli for an isotropic body 

Ajk = h + 2@jk, A, = dew 

Aj~ =A,, =0, j,k=1,2,3;p,q=4,5,6 

where 8, is the Kronecker delta and h and p are Lame coefficients. 
If u = (4, y, UJ is the displacement vector, t denotes transposition, and V, is the gradient, 

then the six-dimensional columns 

NV, h(x), @u(x)) = AW,)‘u(x) 

are the strain and stress vectors. For example, the stress vector is expressed in terms of the 
Cartesian components oii of the stress tensor as follows: 

It can be shown that the Lame system and the homogeneous boundary conditions on 
iX2 \ I(e) can be written as 

L(V,)u(&,x) = -D(V,)AD(V,)‘u(&,x) = f(x), x E S2 (1.3) 

B(~,V,)U(&,X)=~D(V(X))A~(V,)~U(&,X)=O,XE~~\~(E) 

Here v is the unit vector of the inner normal to the boundary of the domain a. Equation (1.3) 
are closed by one-sided contact conditions at the sets ai 

~3,(U;E,x)=a32(u;&,x)=O (1.4) 

U3(E,X) a 0, a,,(u;e,x) d 0 

‘+(Gx)o33(u;E,x)=O, XEOj(&);j=l,...,J 0.5) 

We know (see [l, 21, etc.) that the Signorini problem (1.3)-(1.5) is equivalent to finding the 
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minimum of the potential energy functional J(v) = u(v, v) - F(v) on the convex cone 

K = {v E H’(R):v3(x) 2 0, x E T(E)} 

H’(n) denotes the space of vector functions with finite elastic energy 

a(v,v) = MAD(V,)‘v, D(V,)‘v), 

and F(v) = (I, v)~ is the work done by body forces f E Z&2) during admissible displacements 
v E K; here (,)* is the scalar product in &(R). 

The case of balanced loads is not considered. The equilibrium equations for a body on 
smooth supports require that 

F;(1)=~*(1)=o,F,(x,)-~(x*)=o,~3(1)<o (1.6) 

Here q(y)=(f, pi)” for YE &(a). 
In this case the system of forces is statically equivalent to a single resultant force F;(l)e’ 

applied to an arbitrary point on the central axis of the system 

x2 = x2 - ’ = F3(1)-‘(F3(x+ F2(x3)) 

The intersection of all the closed half-planes containing r(e) is referred to as a(~), the 
convex shell of T(E). The polygon I(0) is denoted by P. Let R = {r : r = d(x)a, a E R6} be the 
space of solid displacements, and R’= R n K, and R” = (r E R’: --I E R’) be the subset of R’ 
generated by all “two-sided” displacements r, = c, - c,,x,, r, = c, +c,&, r, = 0. 

The following conditions are necessary and sufficient [l, Section 2.101 for the existence of an 
absolute minimum for the functional J on K: the central axis of the applied system of forces 
intersects the set I(e) at an internal point. Under the assumptions made above the vector 
function from K minimizing J, if it exists, is defined, apart from an arbitrary two-sided 
displacement. 

In this paper the asymptotic behaviour of the solution of the Signorini problem (1.3)-(1.5) as 
E -+ 0 is constructed by the method of matched asymptotic expansions. We emphasize that a 
simple passage to the limit is impossible: when E = 0 relations (1.4) and (1.5) disappear, and 
Eqs (1.3) are transformed into the second fundamental boundary-value problem of the theory 
of elasticity 

L(V,)u(x)=f(x),xEa;B(x,V,)u(x)=O,xeim (1.7) 

In the case of (1.6) this problem has no solutions. 

2. CONSTRUCTION OF THE ASYMPTOTIC FORM 

We will use the method of matched asymptotic expansions (see [3, 41 etc.), and look for two 
types of expansion: an outer one, valid far from the set r(E) 

U(&,X)=E-'V"(X)+EoV1(X)+... 
(2.1) 

and an inner one, valid in small neighbourhoods of O~(E) 

u(E,x)=E-‘Woi(5’)+EoW”(~)+... 
(2.2) 



305 1. I. Argatov and S. A. Nazarov 

In (2.2) we have introduced the “stretched” variables 

Substituting (2.1) into (1.3), we find that v” is a solid displacement in R \ R”, i.e. v” = d(x)a*, 
a0 ER’, a;= 0 (i=l, 2, 6). Furthermore, the function v1 should satisfy problem (1.7). The 
method of matched asymptotic expansions assumes that the terms ek-‘vk from the right-hand 
side of (2.1) can have sing~arities of orders O(l x - Pf t”) at the points P” (near the perturba- 
tion zone of the boundary conditions), This allows the expression for v’ to have s~gu~i~es 
of order O(f n- Pi I-l) generated by the point forces, We denote by C’ the generallled Green’s 
function which satisfies the relation 

L(V,)Gqx) = - d(x)c”, x E fz; B(x,V,)G’(x) = 0, x E asZ \ Pi (2.4) 

(G”,&o =0,i=3,4,5;Gi(~)=T(x-pj)+U(l),x_)Pi 

The notation is as follows: T is the solution of the Boussinesq problem of the loading of an 
elastic half-space X, 3: 0 by a unit point force applied at the origin of coordinates and directed 
along the 5 axis 

The vector ci is determined from the system 

We recall that the Gram matrix S =I1 (rp’, cp”), Igkal is non-singular. 
Suppose also that VI’ E H’(a) is a solution of problem (1.7) for a self-equilibrating load 

with (v’“, ~p’)~ = 0 (i=3, 4, 5). The vector co satisfies system (2.5) with right-hand side 
components b: = (f, Q’)~ (i = 1, . . . , 6). Then we can have the following representation for v’ 

v’(xf=v’*(~)+b(x)a’+R~G’(x)+...+R,G~(x) (2.7) 

Here d(x)@’ E R \R”, and the I$ are certain constants. 
Because the vectors v*’ and G” leave errors in the system of equilibrium equations (of the 

form d(x)e”, see (2.6) and (2.4)) the vector (2.7) satisfies (1.7) only when the additional 
conditions 

are satisfied. 
We will now consider the construction of the inner expansion term% with the help of which 

condition (1.6) witl be satisfied. We change to the fast variabIes (2.3) and then put E = 0. As a 
result we obtain from (1,4)-(1.6) the model Signorini equation for determinmg w*” 
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wy(g’,o) 3 0, 0~3(W0j(~‘~~O)) s 0 
(2.10) 

W~j(5’,0)Cr33(W0’(5’,0))=0,5’EOj 

We will omit the superscripts on the symbol 5’. Relations (2.9) and (2.10) are supplied with 
additional asymptotic conditions obtained by matching the outer and inner expansions. 
Because I!$ I= E-’ I x- Pj I, by extracting the leading asymptotic forms from v” and v* we obtain 

&~'V"(X)+V1(X)~&~'(~(Pi)Uo+Rj~(~)~ (2.11) 

as x_jP’. 
Comparing expansions (2.1) and (2.2) of the same function u in the {x : CE”~ 61 x- Pj Is CE”“} 

zone (or equivalently, for 15’ I= O(E-“‘)), we derive the above-mentioned conditions 

W”‘(F;)=d(P’)~o+~jT(~)+O(I~-‘),I~-t~. (2.12) 

3. SOLUTION OF THE MODEL SIGNORINI EQUATION 

If the inequality L$ + 2-1’2(&~ -4~;) 2 0 holds, it is easy to see that problem (2.9), (2.10), 
(2.12) is satisfied by the constant vector woi = d(P’)a’ and Rj vanishes. 

We now consider the case when 4’+ 2-““(&$ -u.$i) c 0. We denote by cj the capacity 
cap(o,), of the set oj = (5 : E,‘E wj, 5, = 0), and by Y; the corresponding capacitive potential 
(see PI) 

In accordance with the Papkovich-Neuber representation, the capacitive potential gives the 
solution to the contact problem of the indentation (without turning) of a smooth punch with a 
flat o,-shaped base into an elastic half-space E,, 3 0 to unit depth (see [6,7]) 

5’(5,=a[(a-1-l)5ai~ts’,r)dr53aiY,(U1. i=l,2 
53 

w,i(5)=~(g-a53a3Yj(5),ai =a/&, 

The pressure at the boundary of the half-space produced by the punch is calculated from the 
value of the normal derivative of the function y and is equal to 

-043(5’, 0) = -21.td3q (5’. +O> 

The pressure at the base of the punch is positive (by the maximum principle a,q(e’, +0) c 0 
when E,’ E wj), and has a root singularity at the edge of the contact surface 

uj(~=l+~j(~)~~COSM(p+f(~~IV~~(~)l~~S~”-”+” (3.2) 

Here T is the arc length along a?, and (p, (p> are polar coordinates in the planes perpendicular 
to awj. Kj is a positive function m C-(a!,), and 0 < 6 is otherwise arbitrary. 

If the punch, which is loaded with a pomt force parallel to the 5, axis, is to undergo only a 
translational displacement, it is necessary and sufficient for the line of action of the force to 
coincide with the line 
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The point (E,;‘, E”,i) is called the centre of pressure of the plane shape oi. If the origin 
coordinates is displaced to the point (S;i, 62, 0) then the asymptotic term Yi acquires 
infinity the form Y,(k)= ci 15 1-l +0(151-3), (cf. (3.1)). Below we shall assume that the points 
coincide with the c&&es of pressure-w,:. ‘. 

Conditions (2.9)-(2.12) are therefore satisfied if 

w~~({))=~(P$z~ --@ +2-X(& --&{))wj(g) (3.3) 

formula (2.12) we Comparing the asymptotic behaviour of the vector (3.3) at infinity with 
obtain 

Let (r), = (t+ It I)/ 2 be the positive part of the number t E R. The terms .~ 

of 
at 

I: 

in the expansions 
(2.1) and (2.2) are found apart from some constants. The vector a’ is calculated at the next step 
of the construction of the asymptotic form, and to determine the reaction forces RI, . . . , R, 
and settlement parameters 4, u,“, (5”, in addition to the equilibrium conditions (2.8) the 
conditions 

a,O+2 -H (a,Ox+&{)~O~Rj=O 

a; +2-"&i - asox:‘) < 0 j Rj = -Kj (a30 + 2-H (a4O~~ - ~SOX~’ )) 

also appeared. 
In short notation these conditions are 

Rj =~~(-a;+2-~ (a$/ -a,Ox~))+, j= l,...,J (3.4) 

We call relations (3.4) together with (2.8) the limiting algebraic problem. We emphasize that 
after solving this problem the terms woi of the inner expansions (2.2) are recovered, together 
with the term v”(x) = d(x)a’ from (2.1). Finally, the second term in (2.7) of the outer expansion 
is determined, apart from the term d(x)a’. Restricting ourselves to constructing the dominant 
terms of the asymptotic form, we now put a’ = 0. 

4. THE SOLVABILITY OF THE LIMITING ALGEBRAIC PROBLEM 

We will formulate and prove sufficient conditions for the existence and uniqueness of the 
solution of problem (2.8) (3.4). 

Assertion 1. Suppose the following two conditions are satisfied: (1) three of the points P’, 
j=l,..., J (J 3 3) do not lie on the same straight line, and (2) x0 is an internal point of P. 
Then the limiting algebraic problem has a unique solution. 

Proof. We define the continuous non-linear operator N : R3 + R3 by the formula N(a) = XM[X’a]+, 
where X is a 3 x J matrix with columns (1, xi, xi,‘, M is a diagonal J x J matrix diag{K.,, . . . , K,] and 

M+ =((41)+* . . . * (q,,)‘) for a vector q in Rj. Problem (2.8), (3.4) is equivalent to solving the operator 

equation 

N(a)=h~(-F3(1),-xl”F3(1),-x~F3(1))’ (4.1) 
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We denote by ( ,) the scalar product in R3. The limiting algebraic problem can also be reduced to the 

problem of minimizing the functional 

in R3. 

@(a;h) = ~(N(a),a)-(h.4 

For any non-zero a E R3 the point e, =II a II -‘a lies on the unit sphere S and we have the representation 

Because the function R’ 3 t H (I), t is convex and M is a diagonal matrix, the function @ is convex on 

R3, i.e. 

The relation (XM[X’e]+, e) 2 0 is also satisfied. 
We will denote by KN the kernel of the restriction of the operator N to S 

KN =(e~S:N(e)=O)=(e~S:(Xhf[X’e]+,e)=0) 

The inclusion e E KN is equivalent to the system of inequalities 

e, + e2x/ + e3xi S 0, j=i,...,J (4.2) 

Consequently, KN is a closed subset of S. 
Condition (4.2) ensures that all the points P’ lie in the single closed half-plane e, +%x1 +e,x, d 0, 

which also contains the polygon P. According to the first assumption the convex envelope of the points 
P’ does not degenerate into a line interval, and the interior of P therefore lies entirely in the open half- 

plane e, +e,x, +e,x, ~0. Hence, if F,(l)<0 (see condition (1.6)), then -(h, e) >O for any e E KN. Because 
KN is closed, there is an open set Q c S such that Q 1 KN and for Ve E a the inequality -(h, e) 2 f3, > 0 
holds. We put 

min (N(e),e) = 83 > Cl 
csS\Q 

The following limits hold 

For each T > 0 a t > 0 exists (depending only on T) such that for all a in R3 satisfying II II II) t we have 

the inequality @(a, h) 3 T. Indeed, it is sufficient to put 

t = max#i’T, pi1 @2 + @l+ %T@ 11 

Hence, lim@(a) = 00 as II a II+ 0, and according to a well-known theorem of convex analysis (see e.g. 

Section 2.2 of [2]), solutions of problem (4.1) exist and generate a convex subset of R3. 
The uniqueness of the solution is also proved by applying the above theorem, because the functional is 

strictly convex on the set of solutions by virtue of the diagonality of M and the inequality 

(hr+(l-l)s)+(hr+(l-~)S)<1V+f+(l-_)S+S 

Vss,r~R,sfr,s>O; Ae(O,l) 



5. THE PROPERTIES OF SOLUTIONS OF THE LIMITING ALGEBRAIC PROBLEM 

Let the column a0 E R3 be a soIution of Eq_ (4.1), Renumber~g the points Pi if Neiman, 

we can assume that the positive components of the vector wX’a*]+ in Rj determim the set of 
reaction forces I?,, , . e , R,. (Jo G .I)* The following obvious assertion contains a necessary 
condition for the existence of a solution of Eq. (4.1) 

A~~e~~~~~ 2. If a solution of problem (2.8), (3.4) exists, then x” = (xFY x;) lies irk the convex 
envelope PO of the points 3 f _ _ t > P”“, 

Camllary . If x0 does not belong ta P, then the limiting algebraic problem has no solution. 

The number of supports and their relative position naturally influence tha properties of the limiting 
problem, and a useful characteristic turns out to be the rank of the matrix X. A single support 
correspunds to rank X = 1. For sever& paints Iying along a single straight line rank X = 2. If however 
raak X = 3, t&en, firstXy5 3 P 3, and sewadly, t&ere are rtt teast tkree points aat Zying alang the same 

straight line. 
In the cases rank X = 1, 2, x0 E P or rank X = 3, x0 e 2P Eq. (4.1) has infinitely many solutions. We 

note that when x0 E P the point x0 is an internal point of I”‘( 6) for all E > 0 and the solution of the original 
problem (1,3)-(1.5) is unique. This paradox is explained by tha fact that in this situation the asymptotic 
eonst~c~~on used p~v~o~sl~ needs to be corrected. Here it is appropriate to describe the equilibrium 
position of the body 5) oa supports a)(e) 8s being anstab in the ~pto~c sense. 

We will indicate some properties of sohttions of tbc Ximiting algebraic inequality in the non- 
trivial case, 

A~~e~~~~~ 3. Suppose that rank X = 5 and P is a‘tl. inner point of P. If a0 is a soh&un of 
problem @.I), then, firstly, P 2 3, secofidiy the points PI, _ . a f P” lie in the open h~f-p~~e 
at + a$; + afxz > 0, and thirdly, x0 lies in the interior of the supportIng polygon PO, 

To prove these assertians (see also Section 112 of [S]) it is convenient to assign positive 
weights 1~~ to the points Pj and introduce a system of coordinates attached to the principal 
axes of inertia of the system of material points P’, , + . p P’ or P’, + . . % PJo. This mechanical 
analogy suggests an answer to the question of the conditions under which the body will be 
certain to rest on ah the supports- 

Asserthn 4. If, under the conditions of Assertion 3, the point x0 is contained ia a sufficiently 
small neighbourhood of the centre of mass of the system of material points P’, 4 I . , P’ then 
Jo= J, 

We note that we have in passing estabfished the necessity of the conditions fo~m~ated in 
Assertion I. 

6. JUSTIFICATION OF THE ASYMPTOTIC FORM 

We wiB add~t~ona~~y assume &at the solution of the aide a~geb~~~c problem possesses the 
~o~~~wi~~ property 

a;+2 -H (6X&:: -.,oX()~O, j=l,...,J (6.1) 

We have thus elicited the case of the body touching a support without a positive reaction 
force. Let J” be the number from the preceding swtkm. One: can verify that in the origma1 
Sigrmrhi problem (1 .d)-(1.6) we have the boundary condititrns 
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We will sketch a proof of this fact. We take the vector 

(6.3) 

to be an asymptotic approximation to the solution U(E, x). Here a’, v’, woi, Rj are the 
quantities defined previously, and xi, xi are cut-off functions on C;(R’), with xl = 1 near the 
set wj, xi = 1 in a neighbourhood of the point P', xi =0 near &\C and xi =0 around 
P4(q f i) 

X0(&,X) = l--x’1 (&-‘(x-P1))-...-X’J. (E-l(x- P'j). (6.4) 

We will clarify the construction of (6.3). The first term on the right is the leading term of the 
outer expansion; with the help of the cut-off (6.4) it is cancelled outside the zone of action of 
this expansion (in the immediate vicinity of P', j= 1, . . . , Jo). The second term contains 
components of the inner expansions; due to the cut-offs xi the boundary layers are localized 
near the Pj. Finally, the terms of the asymptotic representations (2.11) and (2.12) are the same 
(having undergone matching) and are used twice in (6.3): both in the first and second 
expressions on the right. This doubling is removed by the subtraction of the third term. 

We substitute (6.3) into the (linear!) problem (1.4), (IS), (6.2); we denote the exact solution 
of the latter by u’. By the constructions performed the errors in equalitites (1.4) are small, and 
the boundary conditions (1.5) and (6.2) are completely satisfied. 

With the help of results from [9, lo] we obtain an estimate of the difference r = u’ -U in 
some weighted space. In particular, from such an estimate it follows that the traces of the r, on 
Oj(&), j=l+P,..., 
j=l+J”,..., 

J are small, from which, by (6-l), the inequalities uf = U,-r, ~0 on Ok, 
J, follow for sufficiently small E. This estimate cannot guarantee the smallness of 

the traces of 033(r) because of the singularities of the stresses at the edges a~,(&). However due 
for formulae (6.1) and (3.2) (recalling that K, > 0) the relations a,(U) + (~~~(r) c 0 hold on 
W/(E), i = 1+ Jo. The inequalities from (1.6) are therefore satisfied by u’, which means that d 

is a solution of the Signorini problem (1.4)-(1.6). Finally, this estimate justifies the asymptotic 
behaviour u -U, and also verifies the outer expansion (2.1) and the inner expansion (2.2) of 
the solution U(E, x). 

Note that the arbitrariness (an element from the lattice R") in the choice of solution in all the 
problems is the same and hence has been ignored. 
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